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a b s t r a c t 

We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. 

In order to explore the entire range of time-dependent strategies, this task is framed as an optimal con- 

trol problem, where the amendment rate is the control and the total rehabilitation time is the quantity 

to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the 

main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, 

given by the Gapon equation. We show that the optimal solution is a bang–bang control strategy, where 

the amendment rate is discontinuously switched along the process from a maximum value to zero. The 

solution enables a reduction in remediation time of about 50%, compared with the continuous use of 

good-quality irrigation water. Because of its general structure, the bang–bang solution is also shown to 

work for the reclamation of other soil conditions, such as saline–sodic soils. The novelty in our modeling 

approach is the capability of searching the entire “strategy space” for optimal time-dependent protocols. 

The optimal solutions found for the minimalist model can be then fine-tuned by experiments and nu- 

merical simulations, applicable to realistic conditions that include spatial variability and heterogeneities. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

In arid and semi-arid areas, where good-quality water for ir-

igated agriculture is scarce, inadequate management of soil and

ater resources can lead to soil sodification [1] . Soil sodicity is

haracterized by a relative high concentration of sodium cations

n the exchange complex or in the soil water, causing negative ef-

ects on the physical and chemical properties of the soil. Among

he physical changes are the breakdown of macroaggregates (slak-

ng), the release of individual clay platelets from aggregates (dis-

ersion), and surface crusting, which have a detrimental impact

n hydraulic conductivity, infiltration rate, seedling emergence and

ater holding capacity [2–4] . Chemical effects of sodicity include

pecific ion deficiencies and toxicities [5] . 

Several amelioration methods exist for reducing the relative

mount of sodium in the soil, including the use of chemical

mendments (most commonly calcium-based) [6,7] , application of

igh electrolyte water [8] , and phytoremediation [9] . For a review

n the amelioration of sodic soils see [10] . Sodic soil reclama-

ion can be very costly and resource intensive (in terms of water,

mendments, time, etc.), although arguably not as expensive as a
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no action” policy [11] . Therefore, from an economic and environ-

ental perspective, it is important to find strategies that optimize

esource usage. 

The main approaches used so far to tackle this challenge are ex-

eriments and computer simulations. On the one hand, field and

aboratory experiments have been employed to compare different

eclamation and management strategies for specific soil conditions,

nd determine the ones that “most effectively” reduce sodicity and

mproved soil structure [12–19] . On the other hand, computer sim-

lations of unsaturated water flow and solute transport have the

dvantage of being able to examine the effectiveness of different

eclamation methods for various soil conditions with little costs

nd in much faster times, compared to experiments [20–22] . 

However, both experiments and cumbersome computer simula-

ions have limited probing power with regard to time-dependent

eclamation strategies. Of the uncountable ways one can choose to

eclaim sodic soils, these two approaches can usually only compare

he outcomes of changing one or more parameters (called control

arameters), while keeping them fixed in time throughout the ex-

eriment or simulation. 

In order to be able to compare a continuum of scenarios and

eclamation protocols, in this paper we make use of optimal con-

rol theory. This allows us to find optimal reclamation strategies

n the entire “strategy space”, where the control parameter can be

ontinuously changed in time. For this, we introduce a minimal-

st model for the dynamics of soil salinity and sodicity [23] , that

http://dx.doi.org/10.1016/j.advwatres.2016.02.014
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1 Note that the quantity mmol c /L coincides with the SI units mol c /m 

3 . 
is amenable to analysis and that is suitable for solving the opti-

mal control problem, while retaining the essential elements of the

physical problem. In this model, we assume that irrigation is the

main water input (e.g., negligible precipitation during a Mediter-

ranean dry season), and that the agricultural soil is relatively ho-

mogeneous, so that the variables may be averaged over the spatial

dimensions. Our main goal here is to show that optimal control

theory can be a very useful tool in the problem of degraded soil

reclamation, and the specific model in question provides a conve-

nient test case for our approach. 

Optimal control theory has been used in many modern envi-

ronmental challenges, such as the management of soil and water

resources [24] , soil erosion [25] , pollution [26] , forest carbon se-

questration [27] and urban drainage systems [28] . In the case of

agricultural systems, its use has been mainly focused on irrigation

water allocation [29–31] and greenhouse management [32,33] . To

the best of our knowledge, however, this is the first study on opti-

mal control of sodic soil reclamation. 

Within the broader topic of sodic soil reclamation, this work

concerns the problem of finding a rehabilitation protocol that al-

lows the reclamation of a sodic soil in the least possible time,

by means of irrigation with calcium-based amendments. Thus, the

amelioration process is viewed as an optimal control problem [34] :

the amount of calcium added to irrigation water is the control,

and the optimal strategy is the time-dependent addition of calcium

that takes the system from a sodic condition to a desired “normal”

soil target, while minimizing a “cost”, in our case, the total time.

In the course of this paper we will show that the optimal strategy

is able to cut by about half the reclamation time (also the amount

of irrigation water used), compared to simply using good-quality

water to flush sodium cations from the root zone. Although highly

idealized, this theoretical estimate provided by control theory of-

fers an upper bound that can serve as a benchmark in actual reha-

bilitation efforts in the field [10] . 

The paper is structured as follows. Section 2 describes the

model for the dynamics of soil salinity and sodicity. In Section 3

the model is linearized and, by using the tools of optimal control

theory, the optimal strategy for the control is calculated analyti-

cally. Appendix A , at the end of the paper, describes the more cum-

bersome arguments involved in the analysis of Section 3 . Finally, in

Section 4 , we discuss the conclusions and future directions. 

2. Dynamics of salinity and sodicity in the soil 

We will briefly review the differential equations that govern the

dynamics of soil salinity and sodicity. A detailed description of the

model can be found in [23] . 

The dynamics of salt and sodium cations in the root zone is

modulated by the dynamics of water in the soil. We assume here

that irrigation is the dominant input of water. This assumption is

reasonable when precipitation is negligible, as in a Mediterranean

dry season or in case of a greenhouse, and that there is no upward

flux of water from the water table due to capillarity. The irrigation

rate, denoted by I , is constant in time , and its electrolyte concen-

tration is C I . For analytical tractability, we also consider the evap-

otranspiration rate T to be constant in time, a reasonable assump-

tion in irrigated soils. Both I and T are given in mm/d or L/m 

2 /d.

We model here a flat and relatively homogeneous agricultural plot,

therefore all the variables are vertically lumped over the rooting

depth Z r = 0 . 4 m. For moderate irrigation rates, no ponding will

occur, and the steady-state percolation reads simply I − T . Writ-

ing the percolation function as L (s ) = rK s s 
c [35] , we can find the

steady-state soil water volume per unit area w (L/m 

2 ) as 

w = nZ r 

(
I − T 

rK s 

)1 /c 

, (1)
here n is the porosity, K s is the saturated hydraulic conductiv-

ty, and the parameter c depends on the soil properties [36] . The

arameter r modulates the saturated hydraulic conductivity as the

alinity and sodicity of the soil change. We will leave the discus-

ion on this dependence to Section 2.2 , after the salinity and sod-

city variables are introduced. 

By writing the balance equation for salt, represented by the to-

al amount of sodium and calcium cations in the root zone, one

btains an equation for the electrolyte concentration of soil water

 [23] , 

d C 

d t 
= 

IC I 
w 

− I − T 

w 

C, (2)

here both C and C I are in millimoles of charge per liter 1 , or

mol c /L. The first term in the right-hand side of Eq. (2) is the salt

nput due to irrigation, and the second term is the salt output due

o water percolation I − T to deeper soil layers. We consider the re-

abilitation efforts to take place before the growing season, there-

ore the equation above does not include salt uptake by plants. 

This linear equation has a characteristic time scale

C = w/ (I − T ) in which the system converges to its steady state

 

• = IC I / (I − T ) . 

Cations in the soil water can replace readily exchangeable

ations adsorbed to soil particles, in a process called cation ex-

hange. This reaction has a time scale of minutes to hours, while

alinity and sodicity processes take place at much longer time

cales of weeks to months. For this reason, we assume the ex-

hange reaction to be in a local thermodynamic equilibrium, which

n turn warrants the use of the well known Gapon equation

23,37] , linking the sodium cation in the soil water to that in the

xchange complex. 

The relative amount of sodium in the exchange complex is sim-

ly the ratio of sodium cation concentration to the total concen-

ration of adsorbed cations (or the cation exchange capacity, C cec ).

his quantity is called the equivalent fraction of sodium in the ex-

hange complex, denoted here by E , or when expressed as a per-

entage, the exchangeable sodium percentage ( esp ). The relative

mount of sodium in the irrigation water is the equivalent frac-

ion E I , while the equivalent fraction of sodium in the soil water is

enoted here by E s . 

Using the equivalent fractions of sodium defined above, the

apon equation can be written as 

E 

1 − E 
= K g 

√ 

2 C 
E s √ 

1 − E s 
, (3)

here K g is the Gapon selectivity coefficient. The value of K g is

oil-specific, ranging from 0.0072 to 0.01740 (mmol c /L) −1 / 2 [38,39] .

ere we use K g = 0 . 01475 (mmol c /L) −1 / 2 , which represents a mean

ehavior of 59 soil samples of varied origin, as reported in 1954

y the United States Salinity Laboratory Staff [40] . In this report,

q. (3) is presented as esr = K g sar , where esr = E(1 − E) −1 is

he exchangeable sodium ratio, and sar = [ Na + ][ Ca 2+ ] −1 / 2 is the

odium adsorption ratio, and the brackets denote molar concen-

ration in mmol/L. The sodicity of a solution is usually measured

y the sar , but in this paper we use the equivalent fraction of

odium for modeling convenience. However, the sar can be eas-

ly related to the right-hand side of Eq. (3) , by using the ex-

ression sar = 

√ 

2 C z E z (1 − E z ) 
−1 / 2 , where C z and E z are the elec-

rolyte concentration and exchangeable sodium fraction of the so-

ution z in question (either soil solution or irrigation water, in our

ase). 
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Table 1 

Definition of the symbols used throughout the paper. The parameters and variables are accompanied 

by their units and by their default values, if applicable. 

Symbol Description Units Value 

C Electrolyte concentration of soil water mmol c /L 

C I Electrolyte concentration of irrigation water mmol c /L 15 

C cec Cation exchange capacity mmol c /kg 100 

E Equivalent fraction of Na + in the exchange complex 1 

E I Equivalent fraction of Na + in the irrigation water 1 0.40 

E s Equivalent fraction of Na + in the soil water 1 

esp Exchangeable sodium percentage 1 

I Irrigation rate mm/d 40 

K g Gapon selectivity coefficient (mmol c /L) −1 / 2 0.01475 

K s Saturated hydraulic conductivity mm/d 800 

M Dry soil mass kg/m 

2 450 

n Porosity 1 0.43 

r Relative saturated hydraulic conductivity 1 0.35 

s Relative soil moisture 1 0.849 

T Evapotranspiration rate mm/d 5 

u Rate of Ca 2+ added to irrigation water mmol c /L 0 

w Volumetric soil water L/m 

2 146 

Z r Rooting depth mm 400 

x State vector, (x 1 , x 2 ) = (C, E) 

� Starting point of a trajectory 

� Target point of a trajectory 

superscript • Stable fixed point 

superscript ∗ Optimally controlled variables 
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Fig. 1. The flow in phase space ( C, E ), shown as gray arrows, as prescribed by Eqs. 

(2) and (4) , for the parameters C I = 0 . 15 mmol c /L and E I = 0 . 9 ( sar = 15 . 6 ), with 

steady state (denoted by a black circle) corresponding to a sodic soil condition. The 

black solid curve and black dashed curve represent the nullclines d C/ d t = 0 and 

d E/ d t = 0 , respectively. See Table 1 for the other parameters used. 
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Writing the balance equation for sodium cations, and using

q. (3) to eliminate the variable E s , one obtains [23] 

d E 

d t 
= 

{
I C I E I − (I − T ) C E s (C, E) 

− d C 

d t 

[
w E s (C, E) + w C 

∂E s (C, E) 

∂C 

]}
×

[
C cec M + w C 

∂E s (C, E) 

∂E 

]−1 

, (4) 

here 

 s (C, E) = 2 

(
1 + 

√ 

1 + 8 K 

2 
g C(1 − E −1 ) 2 

)−1 

(5)

s achieved by solving Eq. (3) , and M denotes the dry soil mass.

able 1 shows the symbols for all the variable and parameters, to-

ether with their definitions, units, and default values for the pa-

ameters. 

Eqs. (2) and (4) constitute the salinity–sodicity system. It can

e shown [23] that they admit one linearly-stable fixed point 

 

• = 

IC I 
I − T 

 

• = 

( 

1 + 

√ 

(I − T )(1 − E I ) 

2 IC I 

1 

K g E I 

) −1 

. (6) 

he flow in phase space ( C, E ) defined by Eqs. (2) and (4) is

hown in Fig. 1 by gray arrows, together with the stable fixed

oint ( C •, E •), denoted by the black circle. The nullclines, d C/ d t = 0

nd d E/ d t = 0 , are represented by the black solid curve and black

ashed curve, respectively. The irrigation parameters C I and E I used

n this graph put the steady state in the point (17, 0.20) of the

hase space, thus characterizing a sodic soil. The flow in phase

pace is predominantly in the horizontal direction, suggesting that

n this case the dynamics of salinity C is much faster than that of

odicity E . 
.1. Calcium flux as a control parameter 

In the derivation of the equations above, we assumed that

odium ( Na + ) and calcium ( Ca 2+ ) are the only cations that partic-

pate in the exchange reaction. This assumption is valid for soils

ith negligible potassium levels, and because the Gapon equa-

ion treats calcium and magnesium indistinguishably with respect

o the cation exchange [41] , these divalent cations are effectively

umped together in our description of Ca 2+ . Fig. 2 a shows the ex-

hange isotherm for Na + and Ca 2+ 
, based on the Gapon Eq. (3) ,

here it can be seen that calcium has a larger affinity for the

xchange complex, compared to sodium cations. For a soil water

oncentration of 20 mmol c /L, a relative concentration of about 95%

f Na + in the soil water means that the relative concentration of

a + in the exchange complex is only 28% (denoted by the black

entagon). 
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Fig. 2. Panel a: The exchange isotherm E versus E s , as defined by Eq. (3) . Two real- 

izations of the curve are shown, for C = 20 mmol c /L (in solid black) and for C = 70 

mmol c /L (in dashed gray). Panels b and c: The dependence of the irrigation param- 

eters C I and E I , respectively, on the calcium flux u , as defined by Eq. (7) . See Table 1 

for the other parameters used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

t

 

 

 

d  

E  

fl  

f

 

a  

c

 

w  

o

2

 

c  

i  

s  

t  

c  

g  

a

 

t  

i  

d  

 

r  

F  

s  

c  

s  

r  

t  

t  

s  

a  

p  

s  

e  

o

3

 

t  

c  

c  

p  
Dissolving calcium cations into irrigation water aims at decreas-

ing the relative concentration of Na + in the soil water, and thus re-

ducing sodicity levels in the exchange complex. As an illustration,

the gray diamond in Fig. 2 a represents the condition after a given

amelioration process with calcium, where the relative concentra-

tion of Na + in the soil water was reduced to about 47%, while

the electrolyte concentration C was increased to 70 mmol c /L, thus

bringing the sodicity in the exchange complex to esp = 10%. This

concomitant increase in C and decrease in E is clearly mediated by

a change in the irrigation water quality. 

Denoting by u (mmol c /L) the amount of calcium cations added

to irrigation water, and calling C ◦
I 

and E ◦
I 

the respective electrolyte

concentration and equivalent fraction of sodium of unamended ir-

rigation water (i.e., for u = 0 ), the dependence of the irrigation pa-

rameters C I and E i on u is 

 I (u ) = 

I C ◦I + I u 

I 
= C ◦I + u (7a)

E I (u ) = 

IC ◦I E 
◦
I 

I C ◦
I 

+ I u 

= 

E ◦I 
1 + u/C ◦

I 

. (7b)

Eq. (7a) shows that the total cation flux IC I from irrigation wa-

ter is simply the sum of the cation flux of the unamended irriga-

tion water IC ◦
I 

plus the calcium flux Iu added to it. Eq. (7b) fol-

lows from the fact that the equivalent fraction of Na + in the ir-

rigation water is the flux of sodium IC ◦
I 

E ◦
I 

(clearly not affected by

the calcium flux u ) divided by the total cation flux IC I . Both func-

tions C I ( u ) and E I ( u ) are shown in Fig 2 b and c, respectively. The

good-quality irrigation water used here has C ◦
I 

= 15 mmol c /L and

E ◦
I 

= 0 . 40 , which translates to sar = 2 . 8 . 

It is important to note that u is the amount of calcium cations

dissolved in the irrigation water and stay dissolved in the soil wa-

ter. The choice of using different calcium-based amendments such

as calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), and cal-

cium sulfate (CaSO 4 ), should take into account their cost, relative

effectiveness in soil rehabilitation, and application difficulty [10] .

Most importantly for this study, the different amendments have

widely varying solubilities in water, so we define u max as the max-

imal amount of Ca 2+ that can be dissolved in the irrigation wa-

ter, and stay dissolved once it is applied to the soil. This quantity

will appear as an important control constraint in deriving an opti-

mal solution for the rehabilitation problem ( Section 3 ). Throughout

the paper we will use u max = 20 mmol c /L, a reasonable value as-

suming a non-calcareous soil and choosing gypsum as the calcium-

based amendment. 
By substituting the expressions for C I and E I found in Eq. (7)

nto Eqs. (2) and (4) , we obtain a system that depends linearly on

he control parameter u : 

d C 

d t 
= 

I 
(
C ◦I + u 

)
w 

− I − T 

w 

C (8a)

d E 

d t 
= 

{
I C ◦I E ◦I − (I − T ) C E s (C, E) 

− d C 

d t 

[
w E s (C, E) + w C 

∂E s (C, E) 

∂C 

]}
×

[
C cec M + w C 

∂E s (C, E) 

∂E 

]−1 

. (8b)

The control parameter u appears linearly in Eq. (8a) and in

 C /d t in Eq. (8b) . The first term IC I E I in Eq. (4) became IC ◦
I 

E ◦
I 

in

q. (8b) . This latter result is somewhat intuitive, since IC I E I is the

ux of sodium cations due to the irrigation water, which in unaf-

ected when a flux Iu of calcium cations is incorporated to it. 

In order to simplify the notation, we define the dynamical vari-

bles vector x = (C, E) T , also called state vector, and thus Eq. (8)

an be rewritten as 

d x 

d t 
= h (x ; u ) , (9)

here function h = (h 1 , h 2 ) 
T is composed of the right-hand sides

f Eqs. (8a) and (8b) , respectively. 

.2. Varying saturated hydraulic conductivity 

Soil structure can be greatly influenced by salinity and sodicity

onditions, and among the most important effects is the decrease

n saturated hydraulic conductivity K s for higher exchangeable

odium fraction E or lower electrolyte concentrations C [42,43] . In

he equations introduced above, we assumed a steady-state water

ontent w , but it can vary as the system evolves in time, especially

iven the link between soil water conductance and the variables C

nd E . This steady-state assumption is justified in two ways. 

First, the equilibration time scale for soil water is much faster

han the processes of salinization and sodification, so effectively

t can be described merely as a function of C and E (in the

ynamical-system parlance, s can be called an “enslaved” variable).

The second reason pertains to the little change in s even when

elative saturated hydraulic conductivity r changes significantly.

ig. 3 a shows how r changes in the phase space ( C, E ), for a

andy loam soil [44] . The triangle denotes the sodic soil initial

ondition (C, E) = (10 , 0 . 30) used throughout the paper, while the

quare indicates the target (17.1, 0.08) for reclamation. While the

elative saturated hydraulic conductivity of the sodic soil and the

arget state are very different ( r = 0 . 35 and r = 0 . 72 , respectively),

heir steady-state relative soil moisture do not differ much. Fig. 3 b

hows the percolation function L ( s ) for these two states. As long

s the water input I − T (denoted by the dotted line) does not sur-

ass the value rK s , the daily percolation will equal I − T , and the

oil moisture will change according to L ( s ). As shown in the graph,

ven a large increase in r (from 0.35 to 0.72), causes s to vary by

nly 5.5% (from 0.849 to 0.804). 

. Optimization 

Our goal is to rehabilitate a sodic soil in minimal time, and at

he end of the process have a non-saline, non-sodic soil, which we

all here “normal” soil. Minimization of total time is chosen be-

ause reclamation costs can be recovered sooner if the soil is fully

roductive at an earlier date. A complete economic analysis would
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Fig. 3. Panel a: The relative saturated hydraulic conductivity r in the phase space 

( C, E ). Panel b: The percolation function L ( s ) for two values of r : in black r = 0 . 72 , 

and in gray r = 0 . 46 . 
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Fig. 4. Panel a: phase space ( C, E ). The gray arrows indicate the flow defined by 

Eq. (9) ; the black curves denote the nullclines d C/ d t = 0 and d E/ d t = 0 ; the colored 

quadrants denote, starting at the white quadrant in clockwise direction, the follow- 

ing soils: normal soil, sodic soil, saline-sodic soil, and saline soil; finally, the dashed 

red curve shows a simulation of Eq. (9) with u = 0 , whose initial condition x 1 is 

denoted by a triangle. Panel b: for the simulated dashed red curve, the variables 

C (dark blue, left vertical axis) and E (light blue, right vertical axis) as function of 

time. See Table 1 for the parameters used. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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e required to determine the best relative allocation of resources

time, applied water volume, amount of amendment, etc.). Because

f the assumption that irrigation rate I is constant, in this paper,

inimal time is equivalent to minimal water usage. 

For simplicity, we divide the phase space ( C, E ) into four quad-

ants, each representing a soil type. They can be visualized in

ig. 4 a, starting from the bottom left quadrant, in the clockwise

irection: normal soil, C < 40 mmol c /L, E < 0.15; sodic soil, C <

0 mmol c /L, E > 0.15; saline-sodic soil, C > 40 mmol c /L, E > 0.15;

nd saline soil, C > 40 mmol c /L, E < 0.15. 

.1. No control 

We start from a sodic soil state x 1 = (10 , 0 . 30) . In conditions

here the irrigation parameters are C I = C ◦
I 

= 15 mmol c /L and E I =
 

◦
I 

= 0 . 40 , i.e., there is no control (no Ca 2+ is added to irrigation

ater, u = 0 ), the resulting steady state x • is in the normal soil

uadrant (see Fig. 4 a). The dashed red curve shows a simulated

rajectory that starts from x 1 and converges to x •. Fig. 4 b shows

he evolution of C and E for this trajectory as function of time,

here the vertical axis on the left corresponds to C (dark curve),

nd the vertical axis on the right corresponds to E (light curve).

ote that both axis were rescaled so that the initial and final po-

ition of the two curves coincide. 

An analysis of the time scales associated with this process [23]

hows that salinity C converges to its steady state C • on a time

cale about 2.9 times faster than that related to the convergence

f sodicity E to its steady state E •, which is attested by Fig. 4 b. 

The target for sodicity reduction is set to E = 0 . 08 . Following

he dashed trajectory shown in Fig. 4 , it takes approximately 41.6

ays for the system to reach this target, marked with a square at

oint x = (� 17 . 1 , 0 . 08) . The � symbol indicates that only asymp-
2 
otically the electrolyte concentration reaches the steady-state C • =
7 1 7 mmol c /L. 

As discussed in Section 2.2 , every point in the phase space ( C,

 ) is associated with a relative saturated hydraulic conductivity r .

herefore, our ulterior goal of setting point (17.1, 0.08) as the tar-

et state is not merely the reduction of sodicity from E = 0 . 30 to

 = 0 . 08 , but rather a doubling of the hydraulic conductivity (see

ig. 3 ), which will have positive effect on agriculture. 

Introducing a time dependent control u ( t ) results in different

rajectories in the phase space, starting from x 1 . Among the infinite

ontrol possibilities that take the system from x 1 to x 2 , the optimal

ontrol u ∗( t ) is the one that does so in the least possible time. 

.2. Linearization 

Eq. (9) is nonlinear, and it is not possible to reach an analytical

olution x ( t ), even for a constant control u . One can approximate

he system’s dynamics by linearizing Eq. (9) around its steady-

tate x •, yielding an equation that is amenable to analysis. As will

e seen, the solution of the linearized problem does not deviate

uch from the behavior of the nonlinear system [23] . In addition,

t is very convenient to work with a linear system from an opti-

al control standpoint, for there is a vast literature on this topic

34,45–47] , with clear steps to follow in order to achieve an ana-

ytical optimal solution. 

Accordingly we perform some simplifications to Eq. (9) with re-

ard to two sources of nonlinearities. The first simplification is the
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Fig. 5. Panel a: the phase space ( C, E ). The dashed trajectory in red is the same sim- 

ulated trajectory shown in Fig. 4 , when no calcium is added to the irrigation water, 

i.e., u = 0 , while the black solid curve is the optimal trajectory and the black dot- 

ted curve represents the response of the nonlinear system to the optimal control. 

Panels b and c: the values of C and E are shown as function of time, respectively, 

for the same three curves in panel a. In panel b, the optimal control (solid black) 

coincides with the nonlinear system (dotted black). See Table 1 for the parameters 

used. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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linearization of Eq. (9) with regard to x , around the stable fixed

point x •, according to 

d x 

d t 
= J (x 

•)(x − x 

•) = g (x ; u ) (10)

where J (x •) is the 2 × 2 Jacobian matrix ∂ h / ∂ x calculated at

x •. Because h 1 is a linear equation in C , we have that g 1 (x ; u ) =
h 1 (x ; u ) , and effectively the procedure above only linearizes h 2 . 

Before the linearization, the functions h 1 and h 2 had a linear

dependence on the control u , as discussed just after Eq. (8) . How-

ever, the linearization of h 2 made g 2 nonlinear with respect to

u . To see this consider that the element of the Jacobian J 22 =
∂ h 2 /∂ E| x = x • is extremely convoluted, and the simple linear relation

between h 2 and u now becomes an equally convoluted relation be-

tween g 2 and u . To avoid this, we carry out a second linearization

around the point u = 0 , as follows 

d x 

d t 
= g ( x ; u = 0 ) + 

∂g ( x ; u ) 

∂u 

| u =0 u 

= 

(
f 1 ( x , u ) 

f 1 ( x , u ) 

)
= f ( x , u ) 

(11)

The system above is now linear both in the dynamical variables x

and in the control parameter u . We can rewrite the right-hand side

f ( x , u ) of Eq. (11) as 

d x 

d t 
= f (x , u ) = A (x ) + B (x ) u, (12)

where the functions A (x ) and B (x ) read 

A (x ) = 

(
A 

0 
1 + A 

C 
1 C 

A 

0 
2 + A 

C 
2 C + A 

E 
2 E 

)
B (x ) = 

(
B 

0 
1 

B 

0 
2 + B 

C 
2 C + B 

E 
2 E 

)
. (13)

Using the parameter values shown in Table 1 , the coefficients in

(13) are 

A 

0 
1 = 4 . 11 B 

0 
1 = 0 . 27 

A 

C 
1 = −0 . 24 B 

C 
1 = 0 

A 

0 
2 = 2 . 97 · 10 

−3 B 

0 
2 = 7 . 76 · 10 

−6 

A 

C 
2 = 2 . 27 · 10 

−17 B 

C 
2 = −1 . 93 · 10 

−18 

A 

E 
2 = −6 . 95 · 10 

−2 B 

E 
2 = −3 . 88 · 10 

−3 . 

(14)

Note that f 2 ( x , u ) depends on C through the terms A 

C 
2 
C and B C 

2 
C in

A (x ) and B (x ) , respectively, where A 

C 
2 

and B C 
2 

are several orders of

magnitude smaller that the other coefficients. It is thus possible to

neglect these coefficients, thus effectively decoupling the two lin-

ear equations with respect to the variables C and E , but still leaving

both equations linearly dependent on the control u . 

3.3. A bang–bang optimal control 

The task of rehabilitating a sodic soil in minimal time is now

translated to a suitable mathematical language: find the time-

dependent control 0 ≤ u ( t ) ≤ u max that takes the two-dimensional

linear system of Eq. (12) from state x 1 to x 2 , while minimizing the

cost functional J = t f , that is, the total time. 

It can be shown with optimal control theory that this problem

has a bang–bang optimal control [45] . This means that the optimal

control u ∗( t ) assumes only the extremal values in the range 0 ≤
u ≤ u max , with discontinuous switches between them. This behav-

ior follows from two properties Eq. (12) : (a) it is an input-affine

system, i.e., the right-hand side f ( x , u ) is linear with regard to the

control u , and (b) it is a normal system, i.e., there is a switching

function ϕ( t ) that equals zero only at isolated instants of time [45] .
Appendix A shows the derivation of the time-optimal control

 

∗( t ) and its associated time-optimal solution x ∗( t ). From t = 0 to

 switching time t = t s the optimal control is u ∗ = u max , resulting

n the trajectory x ∗(t) . As the name suggests, at the switching time

 = t s the control is “switched off” to u ∗ = 0 , resulting in the sec-

nd part of the trajectory, ̂ x ∗(t) , that arrives at the target state x 2 
t t = t f . 

Fig. 5 a shows in solid black the time-optimal trajectory x ∗( t ) in

he phase space ( C, E ). The first part of the trajectory x ∗(t) takes

he system from a sodic soil quadrant to a region near the esp = 15%

hreshold (and a much higher electrolyte concentration C ), and the

econd part of the trajectory ̂ x ∗(t) then takes the system to the

arget x 2 in the normal soil quadrant, in a total of 19.9 days. The

ed dashed curve indicates the no-control case, i.e., no calcium ad-

ition ( u (t) = 0 ), where the trajectory starts at x 1 and reaches the

arget after 41.6 days. The red circle indicates day 19.9 in the no-

ontrol trajectory. 

The optimal control protocol reduces the amount of time re-

uired to decrease sodicity to E = 0 . 08 to about half of the length

f time necessary for the scenario without control. 

Fig. 5 b and c respectively show the evolution of the variables C

nd E as function of time. For this initial condition, a rapid de-

rease in sodicity E can only be accomplished by an initial fast

ncrease in salinity, which in the second part of the solution can

hen be rapidly remediated by the flushing of salt from the root

one using good-quality irrigation water. 

Also plotted in Fig. 5 a is the optimal control u ∗( t ) applied to

he original nonlinear system Eq. (9) . The dotted black curve shows

hat despite the linearizations carried out in Section 3.2 , the trajec-

ory of the nonlinear system follows quite closely that of the linear
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Fig. 6. Panel a: Optimal trajectories in the phase space ( C, E ), whose target point 

is x 2 , are shown in gray. The optimal trajectories that pass through x 1 and x 3 are 

shown in blue and orange, respectively. The thick black curve is the switching curve. 

Panel b: The phase space ( C, E ). The optimal control trajectory, the no-control trajec- 

tory, and the response of the nonlinear system to the optimal control are denoted 

by a solid black curve, a dashed red curve, and a dotted black curve, respectively. 

See Table 1 for the parameters used. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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ystem, arriving at the end of the control process at a neighbor-

ood of the target state x 2 . 

Fig. 5 a shows two different (albeit close) target states. The opti-

al trajectory cannot reach the target x 2 described in Section 3.1 ,

ecause it lies to the left of the nullcline h 1 (x , 0) = 0 . We therefore

et the point (17.6, 0.08) (to the right of the nullcline) as the tar-

et for the optimal control. The proximity between the targets of

he no-control trajectory and of the optimal control trajectory jus-

ifies the comparison between their rehabilitation times discussed

bove. 

The circle in Fig. 5 a indicates day 19.9 in the no-control tra-

ectory, calling our attention to the very slow dynamics on the E

xis (vertical direction) near the f 1 (x , 0) = 0 nullcline (not shown

o avoid clutter, consult instead Fig. 4 a). The advantage of the op-

imal control x ∗( t ) is that, by taking a “zig-zag” path in the phase

pace, it is able to avoid this slow dynamics. 

.4. Generalization for other initial conditions 

Because of the bang–bang solution obtained, our results can

e easily generalized for other initial soil conditions in the ( C, E )

lane. The key lies in constructing the switching curve associated

ith the target x 2 . Fig. 6 a shows the switching curve (thick black),

ividing the phase space into two regions. For initial conditions

bove it, the optimal control is u ∗ = u max , and the system evolves

long the trajectories denoted by thin lines, until it meets the

witching curve, when the control is then switched off to u ∗ = 0 .

fter the switch, the system will evolve along the switching curve

ntil it reaches the target x 2 . The target x 2 is unreachable to initial

onditions that lie below the switching curve. 

The switching curve is formed by two segments. The segment

o the right of x is the solution of d x / d t = f (x , 0) that passes
2 
hrough the point x 2 , while the segment on the left is the solu-

ion of d x / d t = f (x , u max ) that passes through the point x 2 . 

We can now reinterpret x ∗( t ) shown in Fig. 5 a: x ∗(t) is simply

he solution of d x / d t = f (x , u max ) that passes through the point

 1 , while the second part ̂ x ∗(t) is just a segment of the switching

urve. 

The same reasoning is valid for other initial conditions, e.g.,

ig. 6 b shows the optimal trajectory that takes the system from a

aline-sodic condition, at point x 3 = (70 , 0 . 35) (denoted by a star),

o the target x 2 . In solid black we have the trajectory of the opti-

al solution that starts at x 3 , arriving at the target in 22.8 days,

hile the no-control trajectory, shown by the red dashed curve,

rrives at the target in 48.2 days. Once more, the optimal control

 

∗( t ) applied to the nonlinear system of equations yields a trajec-

ory (black dotted curve) that does not deviate significantly from

he trajectory of the controlled linear system (black solid curve). 

. Conclusions 

The tools of dynamical systems and optimal control theory

ere applied here to the environmental problem of reclamation of

 sodic soil. Because of the simplicity of the salinity–sodicity model

sed in this paper, the optimal control strategy presented should

e viewed as giving a first-order estimate for the duration of the

alcium amendment application and for the duration of application

f fresh water in real conditions, where the problem is compli-

ated by spatial and temporal heterogeneities not included explic-

tly here. However, the very simplicity of our minimalist model is

lso the strength of this approach: it dispenses with cumbersome

umerical calculations, allowing us to shed light on the response

f salt dynamics in the soil to variations in irrigation water quality

i.e., the control protocol). 

The modeling approach presented here can be of best use when

ombined with traditional approaches such as numerical simula-

ions and experiments. These approaches can help fine-tune the

ptimal strategy in order to find the best parameter values to each

pecific case. We believe that this dialog between different ap-

roaches to the problem of sodic soil reclamation can be very fruit-

ul, each approach contributing with its strengths. This paper is an

arly step to bridge the knowledge gap in the analytical modeling

spects of the problem. 

In field conditions, the reduction in rehabilitation time should

ctually be even greater than that found in this paper. The dynam-

cs of water in the root zone, and most importantly, the depen-

ence of the hydraulic conductivity on salinity and sodicity levels,

hen taken into account, indicate that it is the ‘longer path’ in

hase space that increases the ability of irrigation water to flush

alt from the root zone, when compared to a ‘shorter path’ that is

ocated in a low hydraulic conductivity region of phase space, i.e.,

he sodic quadrant. The role of the feedback between soil salinity–

odicity conditions and water dynamics within the context of soil

ehabilitation will be our focus in future studies. 

It is also interesting that the bang–bang solution found here

s in agreement with existing amelioration techniques, such as

he high-salt water dilution method [10] . This method consists

n applying to the soil high electrolyte water with a high rela-

ive fraction R of divalent cations (in the notation used here, R =
 − E I ). The soil is then equilibrated with successive dilutions of

his saline water, until salinity, sodicity and the soil physical prop-

rties reach acceptable conditions. The bang–bang protocol pre-

ented here, achieved through the explicit modeling of the dy-

amics of soil salinity and sodicity, can be a useful guide for soil

ehabilitation, while reducing the depth of water required in the

mendment process and minimizing the total amelioration time. 

In summary, by analyzing the coupled dynamics of salinity and

odicity, and their associated time scales, it becomes possible to
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devise strategies to rehabilitate degraded sodic and saline-sodic

soils in an optimal fashion. Secondly, doing so with a model

amenable to analytical techniques is helpful to sharpen our

intuitions for more complex problems. 
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Appendix A. Derivation of time-optimal solution 

Here we show a concise derivation of the solution for our sodic

soil reclamation problem. For a detailed discussion on optimal con-

trol and on Pontryagin’s maximal principle the reader is referred to

[34,45] . 

For this time-optimal fixed-endpoint control problem, the cost

functional J ( u ) simply reads 

J(u ) = 

∫ t f 

0 

L (u ) d t = t f , (A.1)

where the final time t f is to be minimized, and thus the Lagrangian

(or running cost) is L = 1 . 

The Hamiltonian is defined as 

H(x , p , u ) = 〈 p , f (x , u ) 〉 + p 0 L, (A.2)

where the brackets 〈·, ·〉 denote the inner product; p = (p 1 , p 2 ) 
T is

the adjoint vector (also called costate), and p 0 ≤ 0 is the abnor-

mal multiplier, which can be normalized to p 0 = −1 . The canonical

equations prescribe the evolution of the optimal state trajectory x ∗

and costate trajectory p 

∗, according to 

d x ∗
i 

d t 
= 

∂H ( x 

∗, p 

∗, u 

∗) 
∂ p i 

(A.3a)

d p ∗
i 

d t 
= −∂H ( x 

∗, p 

∗, u 

∗) 
∂x i 

, (A.3b)

where the superscript ∗ indicates that the variables are calculated

for the optimal control u ∗( t ). Solving Eq. (A.3) gives 

x ∗1 (t) = x 1 (τ ) e 1 (t, τ ) + 

[
A 

0 
1 + B 

0 
1 u 

∗(t) 
]
( e 1 − 1 ) /A 

C 
1 (A.4a)

x ∗2 (t) = x 2 (τ ) e 2 (t, τ ) + 

(
A 

0 
2 + B 

0 
2 u 

∗(t) 
)
( e 2 − 1 ) / 

(
A 

E 
2 + B 

E 
2 u 

∗(t) 
)

(A.4b)

p ∗1 (t) = p 1 (τ ) /e 1 (t, τ ) (A.4c)

p ∗2 (t) = p 2 (τ ) /e 2 (t, τ ) , (A.4d)

where 

e 1 (t, τ ) = exp 

[
A 

C 
1 ( t − τ ) 

]
(A.5a)

e 2 (t, τ ) = exp 

[(
A 

E 
2 + B 

E 
2 u 

∗(t) 
)
( t − τ ) 

]
, (A.5b)

and x ( τ ), p ( τ ) are the boundary conditions for the state x and

costate p at time τ . 

Because in our case u ∗( t ) is a bang–bang control, we can sim-

ply solve Eqs. (A .4a) and (A .4b) , assuming the trajectory x ∗( t ) is
ormed by consecutive segments with alternating values of u ∗ = 0

nd u ∗ = u max , and then “stich” them together to ensure continu-

ty in x . However, we still do not know how many switches occur

long the trajectory, the switching times, and the initial value of

he control u ∗(0). For that, we need to study the switching func-

ion ϕ, given by 

(t) = 〈 p 

∗(t) , B (x 

∗(t)) 〉 
= B 

0 
1 p 

∗
1 (t) + 

(
B 

0 
2 + B 

E 
2 x 

∗
2 

)
p ∗2 (t) . (A.6)

he value of u ∗ will then vary according to 

 

∗(t) = 

{ 

0 if ϕ(t) < 0 

undetermined if ϕ(t) = 0 

u max if ϕ(t) > 0 . 

(A.7)

he condition above is a result of Pontryagin’s Maximum Principle,

hich says that the Hamiltonian (A.2) has a global maximum for

 x ∗, p 

∗, u ∗) [34] . 

We start analyzing ϕ( t ) by substituting Eq. (A.4) into Eq. (A.6) ,

o that ϕ now depends explicitly on time t , the control u ∗( t ), and

n the boundary conditions x ( τ ) and p ( τ ): 

 = ϕ ( t, x 

∗(τ ) , p 

∗(τ ) , u 

∗(t) ) (A.8)

Because in our approach we solve a fixed-endpoint control

roblem, i.e., the target soil condition is a well-defined point in the

hase space, the values for x (0) and x ( t f ) can be used as boundary

onditions. However, we cannot know in principle the values that

 ( t ) assumes, we only know that it is nonzero for all t [34] . We use

he fact that for free-time problems, the Hamiltonian H = 0 along

he optimal trajectory described by ( x ∗, p 

∗, u ∗), so we can express

 1 ( τ ) as a function of p 2 ( τ ), and thus eliminate p 1 ( τ ) in expression

A.8) , so we finally have ϕ = ϕ(t, p 2 (τ ) , τ, u ) . A careful analysis of

his expression yields that there is only one switching of control,

nd that the initial value u ∗(0) = u max . 

With this information, one can find the optimal trajectory x ∗( t ):

qs. (A .4a) and (A .4b) are evaluated for the two parts of the trajec-

ory, namely, the first part x ∗(t) is evaluated for τ = 0 , x (0) = x 1 =
(10 , 0 . 30) and u ∗(t) = u max ; and the second part ̂ x ∗(t) is evalu-

ted for τ = t f , x (t f ) = x 2 = (17 . 6 , 0 . 08) and u ∗(t) = 0 . These two

ieces of the trajectory meet at the switching time t s , i.e. x ∗(t s ) =̂ 

 

∗(t s ) , so one can find now the values for both t s and t f . For the

arameters given in Eq. (14) one finds that t s � 5.6 d and t f � 19.9

. Using as initial condition x 3 = (70 , 0 . 35) , we find that t s � 5.6

 and t f � 22.8 d. 

The effect of different initial conditions can be explored in the

athematica code found in the supplementary material. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.advwatres.2016.02.014 
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